1 - Revisão de matrizes

Laura Goulart

UESB

16 de Agosto de 2018

Dados $A = (a_{ij}), B = (b_{ij}) \in M_{n \times m}(\mathbb{R}),$ definimos $A + B = (a_{ij} + b_{ij}).$ Propriedades:

A1) Comutativa: A + B = B + A

- A1) Comutativa: A + B = B + A
- A2) Associativa: A + (B + C) = (A + B) + C

- A1) Comutativa: A + B = B + A
- A2) Associativa: A + (B + C) = (A + B) + C
- A3) Existência do elemento neutro: O elemento neutro da adição de matrizes é a matriz nula.

- A1) Comutativa: A + B = B + A
- A2) Associativa: A + (B + C) = (A + B) + C
- A3) Existência do elemento neutro: O elemento neutro da adição de matrizes é a matriz nula.
- A4) Existência da matriz oposta: $\forall A=(a_{ij})\in M_{n\times m}(\mathbb{R}), \exists !(-A)=(-a_{ij})\in M_{n\times m}(\mathbb{R})$ tal que A+(-A)=0.

ME1)
$$\alpha(\beta A) = (\alpha \beta)A$$

ME1)
$$\alpha(\beta A) = (\alpha \beta)A$$

ME2)
$$1 \cdot A = A$$

ME1)
$$\alpha(\beta A) = (\alpha \beta)A$$

ME2)
$$1 \cdot A = A$$

ME3)
$$(\alpha + \beta)A = \alpha A + \beta A$$

ME1)
$$\alpha(\beta A) = (\alpha \beta)A$$

ME2)
$$1 \cdot A = A$$

ME3)
$$(\alpha + \beta)A = \alpha A + \beta A$$

ME4)
$$\alpha(A+B) = \alpha A + \alpha B$$

Dados
$$A\in M_{n imes m}(\mathbb{R})$$
 e $B\in M_{m imes p},$ definimos $AB=C$ tal que $c_{ik}=\sum_{j=1}^m a_{ij}\cdot b_{jk}$

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A= número de linhas de B.

4/9

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A = número de linhas de B.

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A = número de linhas de B.

Propriedades

M1) Em geral, $AB \neq BA$

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A = número de linhas de B.

Propriedades

M1) Em geral, $AB \neq BA$ $OBS\ 1.2$) Fixada uma matriz $A \in M_n(\mathbb{R})$, pode existir matrizes $B \in M_n(\mathbb{R})$ tal que AB = BA.

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A = número de linhas de B.

- M1) Em geral, $AB \neq BA$ $OBS\ 1.2$) Fixada uma matriz $A \in M_n(\mathbb{R})$, pode existir matrizes $B \in M_n(\mathbb{R})$ tal que AB = BA.
- M2) Associativa: A(BC) = (AB)C

Dados $A \in M_{n \times m}(\mathbb{R})$ e $B \in M_{m \times p}$, definimos AB = C tal que

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$$

OBS 1.1) Número de colunas de A = número de linhas de B.

- M1) Em geral, $AB \neq BA$ $OBS\ 1.2$) Fixada uma matriz $A \in M_n(\mathbb{R})$, pode existir matrizes $B \in M_n(\mathbb{R})$ tal que AB = BA.
- M2) Associativa: A(BC) = (AB)C
- M3) Existência do elemento neutro: O elemento neutro para a multiplicação de matrizes quadradas é a matriz identidade.

M4)Propriedade distributiva

M4)Propriedade distributiva

$$(A+B)C = AC + BC$$

M4)Propriedade distributiva

$$(A+B)C = AC + BC$$

$$\bullet \ \ A(B+C) = AB + AC$$

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$.

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$. OBS 1.3) A é singular sse A não é inversível.

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$. OBS 1.3) A é singular sse A não é inversível.

11) A matriz inversa, quando existe, é única.

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$. OBS 1.3) A é singular sse A não é inversível.

- 11) A matriz inversa, quando existe, é única.
- $(A^{-1})^{-1} = A$

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$. OBS 1.3) A é singular sse A não é inversível.

- 11) A matriz inversa, quando existe, é única.
- $(A^{-1})^{-1} = A$
- (3) $(AB)^{-1} = B^{-1}A^{-1}$

Uma matriz $A \in M_n(\mathbb{R})$ é dita inversível se existe uma matriz denotada por A^{-1} (chamada de matriz inversa) tal que $AA^{-1} = I_n = A^{-1}A$. OBS 1.3) A é singular sse A não é inversível.

- 11) A matriz inversa, quando existe, é única.
- $(A^{-1})^{-1} = A$
- (3) $(AB)^{-1} = B^{-1}A^{-1}$

OBS 1.4) Nem toda matriz tem inversa.

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

T1)
$$(A^t)^t = A$$

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

T1)
$$(A^t)^t = A$$

T2)
$$(A+B)^t = A^t + B^t$$

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

T1)
$$(A^t)^t = A$$

$$\mathsf{T2}) \ \ (A+B)^t = A^t + B^t$$

T3)
$$(\alpha A)^t = \alpha \cdot A^t$$
.

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

T1)
$$(A^t)^t = A$$

T2)
$$(A+B)^t = A^t + B^t$$

T3)
$$(\alpha A)^t = \alpha \cdot A^t$$
.

T4)
$$(AB)^t = B^t \cdot A^t$$
.

Dada a matriz $A=(a_{ij})\in M_{n\times m}(\mathbb{R})$, existe a matriz chamada transposta de A em $M_{m\times n}(\mathbb{R})$, e denotada por A^t , no qual troca-se linhas por colunas. Ou seja, $A^t=(a_{ji})$.

T1)
$$(A^t)^t = A$$

$$\mathsf{T2}) \ \ (A+B)^t = A^t + B^t$$

T3)
$$(\alpha A)^t = \alpha \cdot A^t$$
.

T4)
$$(AB)^t = B^t \cdot A^t$$
.

T5)
$$(A^{-1})^t = (A^t)^{-1}$$

Matrizes simétricas e matrizes anti-simétricas

Diremos que uma matriz $A \in M_n(\mathbb{R})$ é simétrica quando $A^t = A$. Se $A^t = -A$ diremos que A é anti-simétrica.

Matrizes simétricas e matrizes anti-simétricas

Diremos que uma matriz $A \in M_n(\mathbb{R})$ é simétrica quando $A^t = A$. Se $A^t = -A$ diremos que A é anti-simétrica.

Propriedade: A soma de matrizes simétricas(ou anti-simétricas) é simétrica(anti-simétrica).

Matrizes simétricas e matrizes anti-simétricas

Diremos que uma matriz $A \in M_n(\mathbb{R})$ é simétrica quando $A^t = A$. Se $A^t = -A$ diremos que A é anti-simétrica.

Propriedade: A soma de matrizes simétricas(ou anti-simétricas) é simétrica(anti-simétrica).

OBS 1.5) O produto de matrizes simétricas(ou anti-simétricas) é siméstrica(ou anti-simétrica)?

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A). Ou seja,

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A). Ou seja,

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A). Ou seja,

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A).

Ou seja,

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

TR1)
$$tr(A+B) = tr(A) + tr(B)$$

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A).

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Propriedades:

Ou seja,

TR1)
$$tr(A+B) = tr(A) + tr(B)$$

TR2)
$$tr(\alpha A) = \alpha \cdot tr(A)$$

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A).

Ou seja,

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

TR1)
$$tr(A+B) = tr(A) + tr(B)$$

TR2)
$$tr(\alpha A) = \alpha \cdot tr(A)$$

TR3)
$$tr(A^t) = tr(A)$$

O traço de uma matriz $A \in M_n(\mathbb{R})$ é a soma da diagonal principal e denotado por tr(A). Ou seja,

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

TR1)
$$tr(A+B) = tr(A) + tr(B)$$

TR2)
$$tr(\alpha A) = \alpha \cdot tr(A)$$

TR3)
$$tr(A^t) = tr(A)$$

TR4)
$$tr(AB) = tr(BA)$$